福井大学 重点研究推進講座構造健全性評価工学研究室Fukui Fracture Group

Publication

2020
  1. Meshii, T., Yakushi, G., Takagishi, Y., Fujimoto, Y. and Ishihara, K., Quantitative comparison of the predictions of fracture toughness temperature dependence using ASTM E1921 master curve and stress distribution T-scaling methods. Engineering Failure Analysis. 2020;111, paper id. 104458. doi:10.1016/j.engfailanal.2020.104458
  1. Meshii, T., Characterization of fracture toughness based on yield stress and successful application to construct a lower-bound fracture toughness master curve. Engineering Failure Analysis. 2020;116, paper id. 104713. doi:10.1016/j.engfailanal.2020.104713
2019
  1. Meshii, T., Failure of the ASTM E 1921 master curve to characterize the fracture toughness temperature dependence of ferritic steel and successful application of the stress distribution T-scaling method. Theoretical and Applied Fracture Mechanics. 2019;100C, pp. 354-361., doi:10.1016/j.tafmec.2019.01.027
  2. Meshii, T., Spreadsheet-based method for predicting temperature dependence of fracture toughness in ductile-to-brittle temperature region. Advances in Mechanical Engineering. 2019;11, paper id. 1687814019870897., doi:10.1177/1687814019870897
  3. 飯井俊行. ASTM E1921のマスターカーブに適合しないフェライト鋼に関する一考察. 日本機械学會論文集. 2019; 85(873):18-00431, doi:10.1299/transjsme.18-00431.
2018
  1. Meshii, T. and Ishihara, K., Fracture toughness prediction under compressive residual stress by using a stress-distribution T-scaling method. Metals. 2018;8:6.doi:10.3390/met8010006
2017
  1. 石原健一・濱田猛・飯井俊行. 小規模降伏条件下応力分布スケーリング法の提案と破壊靭性値の温度依存性予測への適用. 日本機械学會論文集. 2017; 83(847):16-0499, doi:10.1299/transjsme.16-00499.
  2. Ishihara, K., Hamada, T. and Meshii,T. T-scaling method for stress distribution scaling under small-scale yielding and its application to the prediction of fracture toughness temperature dependence. Theoretical and Applied Fracture Mechanics. 2017;90C:182-192. doi:10.1016/j.tafmec.2017.04.008
  3. 石原健一・下池利孝・飯井俊行. 応力分布Tスケーリング法適用による圧縮残留応力付与時破壊靭性値の予測. 日本機械学會論文集. 2017; 83(855):17-0323, doi:10.1299/transjsme.17-00323.
2016
  1. Meshii, T. and Yamaguchi, T., Applicability of the modified Ritchie?Knott?Rice failure criterion to transfer fracture toughness Jc of reactor pressure vessel steel using specimens of different thicknesses?possibility of deterministic approach to transfer the minimum Jc for specified specimen thicknesses. Theoretical and Applied Fracture Mechanics. 2016;85:328-344. doi:10.1016/j.tafmec.2016.04.002
  2. Meshii, T. Yamaguchi, T. and Higashino, Y., Applicability of the modified Ritchie?Knott?Rice failure criterion to examine the feasibility of miniaturized charpy type SE(B) specimens,. Advances in Materials Science and Engineering. 2016;2016:pp. 3728035-1-12. doi:10.1155/2016/3728035
2015
  1. Meshii, T., Lu, K. and Fujiwara, Y., Extended investigation of the test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the ductile-to-brittle transition temperature region as a difference in the crack tip constraint ? What is the loss of constraint in the TST effects on Jc?. Engineering Fracture Mechanics. 2015;135:286-294. doi:10.1016/j.engfracmech.2014.07.025
  2. Lu, K. and Meshii, T., A systematic investigation of T-stresses for a variety of center-cracked tension specimens. Theoretical and Applied Fracture Mechanics. 2015;77:74-81. doi:10.1016/j.tafmec.2015.02.001
2014
  1. Lu, K. and Meshii, T., Three-dimensional T-stresses for three-point-bend specimens with large thickness variation. Engineering Fracture Mechanics. 2014;116:197-203. doi:10.1016/j.engfracmech.2013.12.011
  2. Lu, K. and Meshii, T., Application of T33-stress to predict the lower bound fracture toughness for increasing the test specimen thickness in the transition temperature region. Advances in Materials Science and Engineering 2014;2014:pp.269137-1-9. doi:10.1155/2014/269137
2013
  1. Tsuji, M. and Meshii, T. Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe. Nuclear Engineering and Design. 2013;245:59-67. doi:10.1016/j.nucengdes.2012.10.002.
  2. Meshii, T., Lu, K. and Takamura, R., A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region. Engineering Fracture Mechanics. 2013;104:184-197. doi:10.1016/j.engfracmech.2013.03.025.
2012
  1. Meshii, T. and Ito, Y. Proposal of failure criterion applicable to finite element analysis results for wall-thinned pipes under bending load. Nuclear Engineering and Design. 2012;242:34-42. doi:10.1016/j.nucengdes.2011.09.032.
2011
  1. 辻将隆・飯井俊行. 減肉配管の平面状/非平面状欠陥に適用可能な破裂内圧式の提案. 保全学. 2011; 9 (4): 76-81.
  2. Hasegawa, K., Meshii, T. and Scarth, D. A. Assessment of piping field failures and burst tests on carbon steel pipes with local wall thinning using ASME section XI code case N-597-2. Transactions of ASME, Journal of Pressure Vessel Technology. 2011;133(3):031101-10. doi:10.1115/1.4002498.
  3. Tsuji, M. and Meshii, T. Extending image processing strain measurement system to evaluate fracture behavior of wall-thinned pipes. Nuclear Engineering and Design. 2011;241(9):3605-3612. doi:10.1016/j.nucengdes.2011.07.026.
  4. Tsuji, M. and Meshii, T. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending. Nuclear Engineering andDesign. 2011; 241(10):4089-4094.doi:10.1016/j.nucengdes.2011.08.037.
  5. 辻将隆・飯井俊行. 減肉配管の平面状/非平面状欠陥に適用可能な限界曲げ荷重式の提案. 保全学. 2011; 10 (3): 45-50.
  6. 伊藤嘉晃・飯井俊行. 減肉配管の有限要素解析結果に対する限界曲げ荷重評価基準の提案. 日本機械学會論文集 A編. 2011; 77 (783):1871-1883.
2010
  1. Meshii, T. and Tanaka, T. Experimental T33-stress formulation of test specimen thickness effect on fracture toughness in the transition temperature region. Engineering Fracture Mechanics. 2010; 77 (5): 867-877. doi:10.1016/j.engfracmech.2010.01.014.
  2. Ishida, H. and Meshii, T. A proposal for an element division determination method for finite element waves propagation analysis, Materials Evaluation, 2010; 68 (9): 1021-1029.
  3. Meshii, T., Tanaka, T. and Lu, K. T-stress solutions for a semi-elliptical axial surface crack in a cylinder subjected to mode-I non-uniform stress distributions. Engineering Fracture Mechanics. 2010; 77 (13): 2467-2478. doi:10.1016/j.engfracmech.2010.06.007.
  4. 辻将隆・飯井俊行. 画像ひずみ計測による減肉配管の破壊挙動観察. 日本機械学會論文集 A編. 2010; 76 (772): 1667-1673.
2009
  1. 石田仁志・飯井俊行. 弾性波伝播3次元有限要解析における要素分割選定方法の一提案. 保全学. 2009; 8 (1): 62-67.Ishida, H. and Meshii, T. A proposal for Element Size Selection Method for 3-D Finite Element Elastic Waves Propagation Analysis (in Japanese), Maintenology, Vol. 8, No. 1, pp. 62-67 (2009.4).
  2. Meshii, T. and Shibata, K. Stress intensity factors of various surface cracks inside a hollow cylinder under steady state thermal striping. Transactions of ASME, Journal of Pressure Vessel Technology. 2009;131(3):0312081-03120816. doi:10.1115/1.3109978.
  3. 飯井俊行・田中智大. Tz-stressに対する重ね合わせ原理の定式化. 日本機械学會論文集 A編. 2009;75(759):1526-1530.
    Meshii, T. and Tanaka, T. Formulation of Superposition Principle for Tz-stress (in Japanese), Trans. JSME (A), Vol. 75, No. 759, pp. 1526-1530 (2009. 11).
2008
  1. Kamaya, M., Suzuki, T. and Meshii, T. Normalizing the influence of flaw length on failure pressure of straight pipe with wall-thinning. Nuclear Engineering and Design. 2008;238(1):8-15. doi:10.1016/j.nucengdes.2007.06.006.
  2. Kamaya, M., Suzuki, T. and Meshii, T. Failure pressure of straight pipe with wall thinning under internal pressure. International Journal of Pressure Vessels and Piping. 2008;85(9):628-634. doi:10.1016/j.ijpvp.2007.11.005.
2006
  1. Meshii, T., Ishihara, K, and Asakura, T. Simulation on the decrease in threshold stress intensity factor (SIF) range due to high maximum sif. Journal of ASTM International. 2006;3(2):1-10. doi:10.1520/JAI13195.
  2. 飯井俊行・柴田健太一・渡邊勝彦. 定常温度揺らぎ下円筒環状き裂の応力拡大係数範囲上限値簡易評価. 日本機械学會論文集 A編. 2006;72(713):127-132.
    Meshii, T., Shibata, K. and Watanabe, K. Simplified Evaluation Method of a Steady State Stress Intensity Factor Range Upper Limit for a Circumferential Crack in a Cylinder (in Japanese), Trans. JSME (A), Vol. 72, No. 713, pp. 127-132 (2006. 1).
  3. Meshii, T., Shibata, K. and Watanabe, K. Simplified method to evaluate upper limit stress intensity factor range of an inner-surface circumferential crack under steady state thermal striping. Nuclear Engineering and Design. 2006;236(10):1081-1085. doi:10.1016/j.nucengdes.2005.10.013.
2005
  1. Meshii, T., Ishihara, K, and Watanabe, K. Assessment for decrease in threshold stress intensity factor (SIF) range due to high maximum SIF. Journal of ASTM International. 2005;2(6):1-13. doi:10.1520/JAI12027.
  2. 飯井俊行・石原健一・朝倉俊行. 最大応力拡大係数(K値)増による下限界K値範囲漸減率の定量予測. 日本機械学會論文集 A編. 2005;71(710):1369-1376.
    Meshii, T., Ishihara, K. and Watanabe, K. Quantitative Estimation of Decrease in Threshold Stress Intensity Factor (SIF) Range due to High Maximum SIF (in Japanese),Trans. JSME (A), Vol. 71, No. 710, pp. 1369-1376 (2005. 10).
2004
  1. Meshii, T. and Watanabe, K. Normalized stress intensity factor range solutions of an inner-surface circumferential crack in thin- to thick-walled cylinder under thermal striping by semi-analytical numerical method. Journal of Thermal Stresses. 2004;27(3):253-267. doi:10.1080/01495730390271027.
  2. 飯井俊行・石原健一・渡邊勝彦. 下限界応力拡大係数(k値)範囲の最大k値による漸減現象発生予測. 日本機械学會論文集 A編. 2004;70(692):604-611.
    Meshii, T., Ishihara, K. and Watanabe, K. Assessment on Decrease in Threshold Stress Intensity Factor (SIF) Range due to Maximum SIF (in Japanese),Trans. JSME (A), Vol. 70, No. 692, pp. 604-611 (2004. 4).
  3. Meshii, T. and Watanabe, K. Stress intensity factor of a circumferential crack in a thick-walled cylinder under thermal striping. Transactions of ASME, Journal of Pressure Vessel Technology. 2004;126(2):157-162. doi:10.1115/1.1687797.
2003
  1. Meshii, T. and Watanabe, K. Comparison of near threshold fatigue crack growth data by Kmax-constant method with the post-construction codes. Nuclear Engineering and Design. 2003;220(3):285-292. doi:10.1016/S0029-5493(02)00387-4.
  2. 飯井俊行・渡邊勝彦. 温度揺らぎ下円筒環状き裂の過渡応力拡大係数無次元解. 日本機械学會論文集 A編. 2003;69(681):894-901.
    Meshii, T. and Watanabe, K. Normalized Stress Intensity Factor Range Solution of an Inner-Surface Circumferential Crack in an Hollow Cylinder under Thermal Striping (in Japanese),Trans. JSME (A), Vol. 69, No. 691, pp. 894-901 (2003. 5).
2002
  1. Meshii, T. and Watanabe, K. Crack arrest analysis under cyclic thermal shock for an inner-surface circumferential crack in a finite-length thick-walled cylinder. Journal of Thermal Stresses. 2002;25(12):1121-1131. doi:10.1080/01495730290074559.
  2. Meshii, T. and Watanabe, K. Stress intensity factor error index for finite element analysis with singular elements. Engineering Fracture Mechanics. 2002;70(5):657-669. doi:10.1016/S0013-7944(02)00035-8.
2001
  1. Meshii, T. and Watanabe, K. Stress intensity factor evaluation of a circumferential crack in a finite length thin-walled cylinder for arbitrarily distributed stress on crack surface by weight function method. Nuclear Engineering and Design. 2001;206(1):13-20. doi:10.1016/S0029-5493(01)00333-8.
  2. Meshii, T. and Watanabe, K. Analytical approach to crack arrest tendency under cyclic thermal stress for an inner-surface circumferential crack in a finite-length cylinder. Transactions of ASME, Journal of Pressure Vessel Technology. 2001;123(2):220-225. doi:10.1115/1.1358840.
  3. Meshii, T. and Watanabe, K. Stress intensity factor for a circumferential crack in a finite-length thin to thick-walled cylinder under an arbitrary biquadratic stress distribution on the crack surfaces. Engineering Fracture Mechanics. 2001;68(8):975-986. doi:10.1016/S0013-7944(01)00009-1.
  4. 飯井俊行・細田誠・渡邊勝彦. 繰り返し熱衝撃下円筒内表面環状き裂の停留深さ. 日本機械学會論文集 A編. 2001;67(661):1535-1541.
    Meshii, T. and Watanabe, K. Crack Arrest Depth under Cyclic Thermal Shock for an Inner-Surface Circumferential Crack in a Cylinder (in Japanese), Trans. JSME (A), Vol. 67, No. 661, pp. 1535-1541 (2001. 9).
2000
  1. 飯井俊行・服部修次・渡邊勝彦. 有限長円筒内表面環状き裂の応力拡大係数評価用実用式. 材料. 2000;49(8):839-844.
    Meshii, T., Hattori, S. and Watanabe, K. Stress Intensity Factor for Inner Surface Circumferential Crack in Finite Length Cylinders (in Japanese), J. Japan Soc. Materials Science, Vol. 49, No. 8, pp. 839-844 (2000. 8).
  2. 飯井俊行・渡邊勝彦. 特異要素を用いた有限要素解析による応力拡大係数誤差評価指標. 日本機械学會論文集 A編. 2000;66(652):2106-2112.
    Meshii, T. and Watanabe, K. Error Index for Stress Intensity Factor Evaluation by Finite Element Analysis with Singular Elements (in Japanese), Trans. JSME (A), Vol. 66, No. 652, pp. 2106-2112 (2000. 12).
1999
  1. Meshii, T. and Watanabe, K. Stress intensity factor of an arbitrarily located circumferential crack in a thin-walled cylinder with axisymmetrically loaded ends. Engineering Fracture Mechanics. 1999;62(4-5):371-382. doi:10.1016/S0013-7944(98)00104-0.
  2. Meshii, T. and Watanabe, K. Characteristics of the stress intensity factor of a circumferential crack in a cylinder under radial temperature distribution. JSME International Journal Series A, Solid Mechanics and Material Engineering. 1999;42(2):259-264.
  3. Meshii, T. and Watanabe, K. Maximum stress intensity factor for a circumferential crack in a finite-length thin-walled cylinder under transient radial temperature distribution. Engineering Fracture Mechanics. 1999;63(1):23-38. doi:10.1016/S0013-7944(99)00013-2.
1998
  1. 飯井俊行・渡邊勝彦. 有限円筒中任意位置環状き裂の軸対称曲げ下応力拡大係数簡易評価式. 日本機械学會論文集 A編. 1998;64(625):2361-2366.Meshii, T. and Watanabe, K. Simplified Equation to Evaluate the Stress Intensity Factor of an Arbitrarily Located Circumferential Crack in a Finite Length Cylinder under Axisymmetric Bending (in Japanese), Trans. JSME (A), Vol. 64, No. 625, pp. 2361-2366 (1998. 9).
  2. 飯井俊行・渡邊勝彦. 有限円筒中任意位置環状き裂の一次元温度分布下応力拡大係数簡易評価式. 日本機械学會論文集 A編. 1998;64(620):912-918.
    Meshii, T. and Watanabe, K. Simplified Equation to Evaluate the Stress Intensity Factor of an Arbitrarily Located Circumferential Crack in a Finite Length Cylinder under Radial Temperature Distribution (in Japanese), Trans. JSME (A), Vol. 64, No. 620, pp. 912-918 (1998. 4).
  3. 飯井俊行・渡邊勝彦. 円筒環状き裂の熱応力下応力拡大係数の特性. 日本機械学會論文集 A編. 1998;64(623):1884-1889.
    Meshii, T. and Watanabe, K. Characteristics of the Stress Intensity Factor of a Circumferential Crack in a Finite Length Cylinder under Radial Temperature Distribution (in Japanese), Trans. JSME (A), Vol. 64, No. 623, pp. 1884-1889 (1998. 7).
  4. 飯井俊行・渡邊勝彦. 重み関数法による有限円筒内表面環状き裂の軸対称任意き裂内面応力拡大係数評価. 日本機械学會論文集 A編. 1998;64(621):1192-1197.Meshii, T. and Watanabe, K. Stress Intensity Factor for a Circumferential Crack in a Finite Length Cylinder under Arbitrarily Distributed Stress on Crack Surfaces by Weight Function Method (in Japanese), Trans. JSME (A), Vol. 64, No. 621, pp. 1192-1197 (1998. 5).
  5. 飯井俊行・渡邊勝彦. 有限円筒内表面環状き裂の過渡一次元温度分布下最大応力拡大係数評価. 日本機械学會論文集 A編. 1998;64(624):2164-2170.
    Meshii, T. and Watanabe, K. Maximum Stress Intensity Factor for a Circumferential Crack in a Finite Length Cylinder under Transient Radial Temperature Distribution (in Japanese), Trans. JSME (A), Vol. 64, No. 624, pp. 2164-2170 (1998. 8).
  6. Meshii, T. and Watanabe, K. Closed-form stress intensity factor for an arbitrarily located inner circumferential surface crack in a cylinder subjected to axisymmetric bending loads. Engineering Fracture Mechanics. 1998;59(5):589-597. doi:10.1016/s0013-7944(97)00172-0.
  7. Meshii, T. and Watanabe, K. Closed form stress intensity factor of an arbitrarily located inner-surface circumferential crack in an edge-restraint cylinder under linear radial temperature distribution. Engineering Fracture Mechanics. 1998;60(5-6):519-527. doi:10.1016/S0013-7944(98)00046-0.
1997
  1. 飯井俊行・酒井信介. 厚肉円筒の熱応力下の疲労き裂停留 : 第1報, 片側き裂板による予備検討. 日本機械学會論文集 A編. 1997;63(606):275-280.Meshii, T. and Sakai, S. Fatigue Crack Arrest Problem of Thick-Walled Cylinders under Thermal Stress (1st Report, Preliminary Study by Single Edge Strip) (in Japanese), Trans. JSME (A), Vol. 63, No. 606, pp. 275-280 (1997. 2).
  2. 飯井俊行・酒井信介. 厚肉円筒の熱応力下の疲労き裂停留 : 第2報, 円筒と片側き裂板. 日本機械学會論文集 A編. 1997;63(606):281-285.
    Meshii, T. and Sakai, S. Fatigue Crack Arrest Problem of Thick-Walled Cylinders under Thermal Stress (2nd Report, Comparison of Cylinder with Single Edge Strip) (in Japanese), Trans. JSME (A), Vol. 63, No. 606, pp. 281-285 (1997. 2).
  3. 飯井俊行・渡邊勝彦. 環状き裂を有する円筒の一次元温度分布下応力拡大係数簡易評価式. 日本機械学會論文集 A編. 1997;63(610):1205-1212.
    Meshii, T. and Watanabe, K. Stress Intensity Factor of Circumferential Crack of Cylinders under Radial Temperature Distribution (in Japanese), Trans. JSME (A), Vol. 63, No. 610, pp. 1205-1212 (1997. 6).
  4. 飯井俊行・渡邊勝彦. 軸対称荷重を受ける円筒の任意位置環状き裂の応力拡大係数簡易評価. 日本機械学會論文集 A編. 1997;63(616):2655-2660.Meshii, T. and Watanabe, K. A Simplified Evaluation Method of the Stress Intensity Factor of an Arbitrarily Located Circumferential Crack in a Cylinder Subjected to Axisymmetric Loads (in Japanese), Trans. JSME (A), Vol. 63, No. 616, pp. 2655-2660 (1997. 12).