福井大学 重点研究推進講座構造健全性評価工学研究室Fukui Fracture Group

Conference Papers

2018
  1. Meshii, T. and Ishihara, K., Application of the T-scaling method to predict fracture toughness under compressive residual stress in the transition temperature region, Proc. 2018 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2018-84151, pp. 1-9, Prague, Czech Republic (2018. 7.15-20).
  2. Nakano, H. and Meshii, T., Application of T-scaling method to account for the effects of notch acuity on notch fracture toughness in the ductile-to-brittle transition temperature region, Proc. 2018 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2018-84165, pp. 1-8, Prague, Czech Republic (2018. 7.15-20).
  3. Inoue, T. and Meshii, T., Prediction of fracture toughness temperature dependence over a wide range using stress distribution scaling method, Proc. 2018 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2018-84172, pp. 1-11, Prague, Czech Republic (2018. 7.15-20).
2017
  1. Ishihara, K., Hamada, K. and Meshii, T., Prediction of the temperature dependence on fracture toughness by new stress distribution scaling method, Proc. 2017 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2017-65350, pp. 1-9, Wailoloa, HI, USA (2017. 7.16-20).
  2. Meshii, T., Ishihara, K. and Nakano, H., Application of SDS method to predict fracture toughness temperature dependency of A533B steel, Proc. 2017 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2017-65311, pp. 1-7, Wailoloa, HI, USA (2017. 7.16-20).
2016
  1. Meshii, T. and Yamaguchi, T., Engineering framework to transfer the lower bound fracture toughness between different temperatures in the DBTT region, Procedia Structural Integrity. (2016. 7), 2, pp. 697-703. doi:10.1016/j.prostr.2016.06.090
  2. Meshii, T. and Ishihara, K., Engineering framework to transfer the minimum fracture toughness in the DBTT region between SE(B) and 1T CT specimens, Procedia Structural Integrity. (2016. 7), 2, pp. 704-711. doi:10.1016/j.prostr.2016.06.091
  3. Yamaguchi, T., Higashino, Y. and Meshii, T., Engineering framework to utilize miniaturized Charpy type SE(B) specimens to predict Jc of full sized specimens, Procedia Structural Integrity. (2016. 7), 2, pp. 712-719. doi:10.1016/j.prostr.2016.06.092
  4. Muniz-Calvente, M., Shlyannikov, V. N., Meshii, T., Giner, E., Fernandez-Canteli, A., Joint evaluation of fracture results from distinct test conditions, implying loading, specimen size and geometry, Procedia Structural Integrity. (2016. 7), 2, pp. 720-727. doi:10.1016/j.prostr.2016.06.093
  5. Ishihara, K., Hamada, T., Kikuya, N., Meshii, T., Applicability of modified Ritchie-Knott-Rice failure criterion to predict the onset of cleavage fracture for the test specimen with residual stress introduced to the crack tip, Procedia Structural Integrity. (2016. 7), 2, pp. 728-735. doi:10.1016/j.prostr.2016.06.093
  6. Meshii. T., Yamaguchi, Y. and Fukinbara, K., Applicability of a deterministic approach to transfer the minimum fracture toughness between different temperatures in the DBTT region, Proc. 2016 ASME Pressure Vessels and Piping Conference, CD-Rom, PVP2016-63142, 6 pages, doi:10.1115/PVP2016-63142, Vancouver, Canada (2016. 7).
  7. Meshii. T., Fujita, Y. and Yamaguchi, T., Applicability of a deterministic approach to predict the minimum fracture toughness in the DBTT region from tensile test results~ example for 0.5T SE(B) and 1T CT specimens, Proc. 2016 ASME Pressure Vessels and Piping Conference, CD-Rom, PVP2016-63143, 6 pages, doi:10.1115/PVP2016-63143, Vancouver, Canada (2016. 7).
  8. Meshii. T., Fujita, Y. and Yamaguchi, T., Application of the modified Ritchie-Knott-Rice criterion to predict fracture toughness of miniaturized Charpy type SE(B) specimens, Proc. 2016 ASME Pressure Vessels and Piping Conference, CD-Rom, PVP2016-63211, 6 pages, doi:10.1115/PVP2016-63211, Vancouver, Canada (2016. 7).
2015
  1. Mori, K. and Meshii, T., Study of failure criterion applicable to elastic-plastic finite element analyses of wall-thinned pipes subjected to multi-axial loading (case for groove type flaw under combined internal pressure and bending loading), Proc. ICONE-23, CD-Rom, ICONE23-1532, pp. 1-6, Makuhari, Chiba, Japan (2015. 5).
  2. Mori, K. and Meshii, T., Improving prediction of limit bending load for wall-thinned pipes by reconsidering the effect of biaxiality, Proc. 2015 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2015-45067, pp. 1-7, Boston, MA, USA (2015. 7.19-23).
  3. Meshii, T. and Lu, K., Applicability of a deterministic approach to transfer the fracture toughness Jc between different specimen thicknesses, Proc. 2015 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2015-45071, pp. 1-9, Boston, MA, USA (2015. 7.19-23).
  4. Meshii, T., J's disability could explain all the test specimen size effects observed for the fracture toughness (Jc) of a material in the DBTT region, Proc. 2015 ASME Pressure Vessels and Piping Conference, doi:10.1115/PVP2015-45070, pp. 1-7, Boston, MA, USA (2015. 7.19-23).
  5. Meshii, T., Lu, K., Fujiwara, Y., Takamura, R. and Yamaguchi, T., J's disability to characterize the crack-tip stress fields accurately could explain all the test specimen size effects observed for the fracture toughness (Jc) of a material in the ductile-to-brittle transition temperature region, ESIA13: 13th International Conference on Engineering Structural Integrity Assessment, pp. 395-404, Manchester, UK (2015. 5.19-20).
2014
  1. Meshii, T., Lu, K. and Takamura, R., Extended investigation of test specimen thickness (TST) effect on the fracture toughness (Jc) of a material in the transition temperature region as a difference in the crack tip constraint?what is a loss in constraint in the TST effect on Jc?, Procedia Materials Science. (2014. 6), 3, pp. 57-62. doi:10.1016/j.mspro.2014.06.013
  2. Fujiwara, Y., Lu, K., Takamura, R., Fujita, Y. and Meshii, T., Validation of the (4δt, σ22c) failure criterion to explain the test specimen thickness effect of A533 grade B steel in the ductile-to-brittle transition temperature region, Proc. 2014 ASME Pressure Vessels and Piping Conference, Volume 1: Codes and Standards, PVP2014-28307, pp. V001T01A006; 6 pages, doi:10.1115/PVP2014-28307, Anaheim, CA, USA (2014. 7).
  3. Yoshii, K. and Meshii, T., Reconsidering the effect of stress biaxiality on pipe burst (effect of axial loading on the onset of plastic instability), Proc. 2014 ASME Pressure Vessels and Piping Conference, Volume 1: Codes and Standards, PVP2014-28141, pp. V001T01A016; 6 pages, doi:10.1115/PVP2014-28141, Anaheim, CA, USA (2014. 7).
2013
  1. Meshii, T., Lu, K. and Takamura, R., Validating the mechanical nature of the test specimen thickness effect on fracture toughness in the transition temperature region, Proc. 2013 ASME Pressure Vessels and Piping Conference, CD-Rom, Paris, PVP2013-97153, pp. 1-10 (2013. 7).
  2. Meshii, T. and Yoshii, K., Displacement based failure criterion applicable to finite element analysis results for wall-thinned pipes under pressure load, Proc. 2013 ASME Pressure Vessels and Piping Conference, CD-Rom, Paris, PVP2013-97161, pp. 1-6 (2013. 7).
2012
  1. Meshii, T., Crack-tip constraint and fracture toughness of an inner-surface crack under thermal shock, Proc. 2012 ASME Pressure Vessels and Piping Conference, CD-Rom, Tronto, PVP2012-78038, pp. 1-5 (2012. 7).
  2. Yoshiaki, Ito and Meshii, T., Study on the effect of axial flaw length on limit bending load of wall thinned straight pipes by large strain finite element analyses, Proc. 2012 ASME Pressure Vessels and Piping Conference, CD-Rom, Tronto, PVP2012-78074, pp. 1-5 (2012. 7).
  3. Tsuji, M. and Meshii, T., Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe, Proc. 2012 ASME Pressure Vessels and Piping Conference, CD-Rom, tronto, PVP2012-78204, pp. 1-7 (2012. 7).
  4. Lu, Kai and Meshii, T., Prediction of lower bound fracture toughness in the transition temperature region by T33-stress, Proc. 2012 ASME Pressure Vessels and Piping Conference, CD-Rom, Tronto, PVP2012-78204, pp. 1-7 (2012. 7).
2011
  1. Meshii, T. and Tanaka, T., Framework to Correlate Test Specimen Thickness Effect on Fracture Toughness with T33-stress, Proc. 2011 ASME Pressure Vessels and Piping Conference, CD-Rom, Baltimore, PVP2011-57114, pp. 1-9 (2011. 7).
  2. Meshii, T., Proposal of a Guideline to Classify Planar/Non-Planar Flaw in Wall Thinned Straight Pipes under Bending Load, Proc. 2011 ASME Pressure Vessels and Piping Conference, CD-Rom, Baltimore, PVP2011-57113, pp. 1-6 (2011. 7).
  3. Tsuji, M. and Meshii, T., Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending, Proc. 2011 ASME Pressure Vessels and Piping Conference, CD-Rom, Baltimore, PVP2011-57479, pp. 1-6 (2011. 7).
2010
  1. Tanaka, T. and Meshii, T., Formulating Test Specimen Thickness Effect on Fracture Toughness with T33-Stress: Case of 3PB Test Specimen, Proc. 2010 ASME Pressure Vessels and Piping Conference, CD-Rom, Seattle, PVP2010-25872, pp. 1-7 (2010. 7).
  2. Meshii, T., Proposal of an Internal Burst Equation Applicable to Planar/Non-Planar Flaw in Wall Thinned Pipes, Proc. 2010 ASME Pressure Vessels and Piping Conference, CD-Rom, Seattle, PVP2010-25873, pp. 1-7 (2010. 7).
2009
  1. Ishida, H. and Meshii, T., A Trial of Application to Ultrasonic Testing System Development with Finite Element Elastic Waves Propagation Analysis, Proceeding of the 7th International conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, CD-Rom, Yokohama, A2-132, pp. 1-6 (2009. 5).
  2. Hasegawa, K., Meshii, T. and Scarth, D. A., Assessment of Piping Field Failures and Burst Tests on Carbon Steel Pipes with Local Wall Thinning Using ASME Section XI Code Case N-597-2, Proc. 2009 ASME Pressure Vessels and Piping Conference, CD-Rom, Prague, PVP2009-77132, pp. 1-9 (2009. 7).
  3. Meshii, T. and Tsuji, M., Assessment of Environmental Effect on the Closure-Free Threshold Stress Intensity Factor (SIF) Range, Proc. 12th International Conference on Fracture (CD-ROM), Ottawa, Canada, T12.060, pp. 1-9 (2009.7).
  4. Herman, I., Kuwazuru, O. and Meshii, T., Effect of Flaw Geometry on the Fracture Behavior of Wall-thinned Pipe under Internal Pressure, Proc. 12th International Conference on Fracture (CD-ROM), Ottawa, Canada, T35.011, pp. 1-10 (2009.7).
2008
  1. Herman, I. and Meshii, T., Fracture Mode Prediction Method for Pipes with Wall-Thinning by Using the History Data of Strain Ratio, Proc. 2008 ASME Pressure Vessels and Piping Conference, CD-Rom, Chicago, PVP2008-61908, pp. 1-6 (2008. 7).
  2. Meshii, T., Educating Nuclear Engineers of the 21st Century - Introduction of the recent activities by the Atomic Energy Society of Japan, Proceedings The 16th Pacific Basin Nuclear Conference, CD-Rom, Aomori, P16P1060 (Invited), pp. 1-7, (2008. 10).
2007
  1. Meshii, T. and Shibata, K., Stress Intensity Factors of Various Surface Cracks inside a Hollow Cylinder under Steady State Thermal Striping, Proc. 2007 ASME Pressure Vessels and Piping Conference, CD-Rom, San Antonio, pp. 1-7 (2007. 7).
  2. Kamaya, M., Meshii, T., Suzuki, T. and Yamada, M., Influence of Flaw Length on Failure Pressure of Straight Pipe with Wall Thinning, Proc. 2007 ASME Pressure Vessels and Piping Conference, CD-Rom, San Antonio, pp. 1-6 (2007. 7).
  3. Meshii, T., Sato, Y., Kouno, N., Chai, L., Aoki, H., Tsuji, M. and Inoue, K., Assessment of Environmental Effect on the Decrease in Threshold Stress Intensity Factor (SIF) Range due to High Maximum SIF, Proc. Seventh International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics (36th National Fatigue and Fracture Mechanics), Tampa, pp. 90 (2007. 11).
2006
  1. Kamaya, M. and Meshii, T., Failure Pressure of Straight Pipe Containing Metal-Loss Flaw under Internal Pressure, Proceedings of the 6th Asian International Symposium on the Structural Integrity of Nuclear Components, Kenting, Taiwan, pp. 87-97 (2006. 4).
  2. Meshii, T. and Kaegyama, K., Stress Intensity Factor Error Index for Finite Element Analysis with Non-Singular Elements, Proc. 2006 ASME Pressure Vessels and Piping Conference, CD-Rom, Vancouver, pp. 1-5 (2006. 7).
  3. Chai, L., Kagawa, Y. and Meshii, T., TLM Modeling of Elastic Wave Propagation and its Back Propagation in Time Reversal, Proc. ASIAN SIMULATION CONFERENCE 2006, CD-Rom, Tokyo, pp. 1-2 (2006. 10).
2005
  1. Meshii, T., Ishihara, K. and Asakura, T., Near Threshold Fatigue Crack Growth Simulation, Proc. 11th International Conference on Fracture (CD-ROM), Turin, Italy, pp. 1-6 (2005.3).
  2. Meshii, T., Ishihara, K. and Asakura, T., Simulation on the Decrease in Threshold Stress Intensity Factor (SIF) Range due to High Maximum SIF, in “Fatigue and Fracture Mechanics: 35 th Volume STP 1480,” Reno, pp. 234-243 (2005.5).
  3. Meshii, T., Shibata, K. and Watanabe, K., Upper Limit Stress Intensity Factor Range Evaluation of an Inner-Surface Circumferential Crack under Steady State Thermal Striping by a Simplified Method, Proc. 6th International Congress on Thermal Stresses, Vol. 1, Vienna, pp. 293-296 (2005. 5).
  4. Meshii, T., Shibata, K. and Watanabe, K., Simplified Method to Evaluate Upper Limit Stress Intensity Factor Range of an Inner-Surface Circumferential Crack under Steady State Thermal Striping, Proc. 2005 ASME Pressure Vessels and Piping Conference, Vol. 3, Denver, pp. 263-267 (2005. 7).
2004
  1. Meshii, T., Ishihara, K. and Watanabe, K., Simulation on decrease in threshold stress intensity factor (SIF) range due to high maximum SIF, International Conference on Fatigue Damage of Structural Materials V, Hyannis, USA, P24 (2004.9).
2003
  1. Meshii, T. and Watanabe, K., Normalized Stress Intensity Factor Solution of an Inner-Surface Circumferential Crack in Thin- to Thick Walled Cylinder under Thermal Striping, Proc. 2003 ASME Pressure Vessels and Piping Conference, Vol. 461 (2003. 7), Cleveland, pp. 45-50.
  2. Meshii, T. and Watanabe, Timestep Size Selection Strategy for MD Analysis by Verlet Algorithm, Proc. 5th International Conference for Mesomechanics, Tokyo (2003. 8), pp. 72-79.
  3. Meshii, T., Ishihara, K. and Watanabe, Assessment for Decrease in Threshold Stress Intensity Factor (SIF) Range due to High Maximum SIF, in “Fatigue and Fracture Mechanics: 34 th Volume STP 1461,” Tampa, pp. 138-150 (2003.11).
2002
  1. Meshii, T. and Watanabe, K., Stress Intensity Factor of a Circumferential Crack in a Thick-Walled Cylinder under Thermal Striping, Proc. ASME Pressure Vessels and Piping Conference, Vol. 443-1, (2002.8), Vancouver, pp. 93-99.
2001
  1. Meshii, T. and Watanabe, K., Crack Arrest under Cyclic Thermal Shock for an Inner-Surface Circumferential Crack in a Finite-Length Cylinder, Proc. 4th International Congress on Thermal Stresses, (2001.6), Osaka, pp. 467-470.
  2. Meshii, T. and Watanabe, K., Stress Intensity Factor Error Index for Finite Element Analysis with Singular Elements, Proc. 10th International Conference on Fracture, (2001. 12), Hawaii, CD-ROM.
2000
  1. Meshii, T. and Watanabe, K., Analytical Approach to Crack Arrest Tendency under Cyclic Thermal Stress for an Inner-Surface Circumferential Crack in a Finite-Length Cylinders, Proc. ASME Pressure Vessels and Piping Conference, Vol. 404, (2000), Seattle, pp. 29-35.
1998
  1. Meshii, T. and Watanabe, K., Stress Intensity Factor of an Arbitrarily Located Circumferential Crack in Axisymmetrically Loaded Cylinders, Proc. of ASME/JSME Joint Pressure Vessels and Piping Conference, Vol. 365 (1998), San Diego, pp.303-309.
1995
  1. Yamamoto, T., Meshii, T. et al., Development of Large-Capacity Single Casing Reheat Turbine, Proc. CSPE/JSME/ASME Int. Conf. Power Engng.-95 (ICOPE-95), (1995), Shanghai, pp. 667-670.
1993
  1. Fujikawa, T., Meshii, T. et al., Decade of Wakamatsu High-Temperature Turbine Project, Proc. of JSME-ASME International Conference on Power Engineering-93, Vol. 2 (1993), Kawasaki, pp. 71-76.
1991
  1. Fujikawa, T., Meshii, T. et al., Operating Experience of EPDC’s Wakamatsu 50MW High-Temperature Turbine STEP II (649/593 C), Proc. of EPRI 3rd Int. Conf. on Improved Coal-Fired Power Plants, (1991), San Francisco.